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ABSTRACT

Artificial neural networks were used successfully to sequence operations in a small,

recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The

neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings

and mach numbers for conditions occurring shortly after startup and extending to fully

developed flow. Artificial neural networks were trained and tested for estimating: sensor

readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns

and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel

was operated with its roach 2.0 nozzle, and shadowgraph was recorded near the nozzle

exit. These results support the thesis that artificial neural networks can be combined with

current workstation technology to automate wind tunnel operations.
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INTRODUC_ON

Automation of wind tunnel operations using artificial neural networks has

been tested in a 3.81 by 10 in. (0.0968 by 0.254 m)

subsonic/transonic/supersonic wind tunnel at NASA-Lewis Research Center. A

possible approach to automation, which uses operator-trained, workstation-

resident, software neural nets as sequencers, was reported previously by the

authors, la One of the reports discussed the useof archival flow visualization

records from the Lewis tunnel to train the neural networks. _ This paper will

discuss the performance of neural net sequencers which were trained and tested

on recent runs of the wind tunnel with its mach 2 nozzle and will indicate why

and where said sequencers should be useful. Briefly stated, a sequencer

estimates for a wind tunnel the next appropriate control settings, flow

visualization patterns, or sensor values from the current control settings, flow

visualization patterns, or sensor values. A distributed or programmable logic

control system 3 can then use these estimates to set the next appropriate state of

the tunnel without human intervention.

The authors reported previously that neural net sequencers performed

poorly for some subsonic/transonic/supersonic cascade configurations. 2 Recent

results using the small tunnel's mach 2 nozzle, by contrast, have been fair to

very good in selected flow regions. This improvement is attributed to: a more

repeatable, cleaner flow visualization setup, better tunnel sidewall stability and
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the increased experience of the tunnel operator in preparing training sets for

neural net sequencers. Hence, the results reported herein refer to the mach 2

configuration only.

There are several motives for considering the automation of wind tunnel

operations using neural nets in particular. First, neural net sequencers can

replace personnel whose job is to execute routine sequences of actions during

tunnel start-up and operation. A major reason for using human operators for

some routine tasks is that those tasks require the interpretation of patterns such

as flow visualization. Neural nets perform these interpretations quite effectively

as will be demonstrated. Second, neural nets can assure the quality of

operations. The nets can be trained with the actual examples of the most expert

personnel, as reported in this paper, or with model generated data. Experimental

protocols and wind tunnel characteristics can be interfaced efficiently. Third,

neural nets are a tool for managing and monitoring the operation of a wind

tunnel. Neural nets measure the utilization, effectiveness, and consistency of

performance of all inputs including: personnel, instrumentation, flow

conditioning, operations methods and services. An input is easily removed from

a training set, or added to a training set, for evaluation of its necessity or

effectiveness. Fourth, neural nets can provide continuous monitoring of the

health of the wind tunnel. The neural nets will estimate both the current and the

next flow visualization or sensor values. Significant deviations from the actual

flow visualization and sensor values can be detected. Finally, neural nets are an
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effective way to use increasingly powerful workstations. The neural nets--

resident in the SGI Crimson workstation used for the work discussed herein--

process more than 300 flow visualization records per second. 2 Hence, 10 to

100 nets could be used to process different groups of sensors, flow visualization

pictures, and valve settings, even if the tunnel state were changed as often as

once per second. Software is also under development to allow the workstation to

communicate control settings to the tunnel's distributed or programmable logic

control system?

Automation of wind tunnel operations is targeted toward three classes of

tunnels. Development and experimentation are being done in a wind tunnel

described in this paper. That tunnel has many of the features of the larger

tunnels at Lewis Research Center, but its small size makes it an affordable,

practical place for testing automation technology. A second targeted class is the

collection of existing large wind tunnels. A practical problem here is that neural

nets are trained by example. A tunnel must be run to generate the examples, and

the cost effectiveness of that approach is questionable. Hence, the effective

application of automation to this target probably will require identification of

one or more of the following situations: operations which use pattern

identification or visualization and occur commonly for many different kinds of

tests; other kinds of operations that are executed frequently and repeatedly; and

situations where models of tunnel operations exist and can be used to supplement

limited data. The massive parallel processing
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capabilitiesof neuralnetscanalsobesupplementedandaugmentedto some

extentwith therule insertioncapabilitiesof expertsystems,fuzzy control, or

simpleprogramminglogic. Finally, newwind tunnelsare targetsfor automation,

if their designscanbeconstrainedto usefully the automationcapabilitiesof

artificial neuralnetworksandotherartificial intelligencetechnologiesas well as

the inputs(particularlyflow visualization)thatthosetechnologiesrequire.

The resultsin thispaperprovideevidenceto supporttwo of the

motivationsfor usingartificial neuralnetworksfor automatingwind tunnel

operationsincluding: theefficient,accurateinterpretationof patterndataas

exemplifiedby flow visualizationpatterns;andthe conceptof traininga neural

network with anexpert'sexamples.First thewind tunnel,the shadowgraphflow

visualizationsystem,theworkstation,the neural-netsequencers,thedata

handlingsystemandthecontrol systemaredescribed.Next, the experimental

proceduresareexplainedwhereimage-to-sensor,image-to-image,and sensor-to-

sensorneural-netsequencersare trainedandtested.Then, theresultsare

discussed,andtherangesfor goodandpoorperformancearepresentedand

explained.

MODERNIZED WIND TUNNEL--FOR AUTOMATION

The wind tunnelusedto generatethetrainingsetsfor the neural-net

sequencerswasactuallyanupgradeof thefirst supersonicwind tunneloperated

at Lewis ResearchCenter(circa 1946).4 The original tunnel,Fig. 1,was

essentiallyan 8 ft (2.44m) long, 4 by 10 in. (0.102by 0.254m) rectangular
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ductconnectedto a centralair (C.A.) supplyvia a 12in. (0.305m) diameter

valve andto analtitudeexhaustsystemvia adiffuseranda 42 in. (1.07m)

diameterexhaustvalve. The tunnelhasbeenupgradedmanytimessince1946.

Recently,thetunnelwasmodernizedto havemanyof thesamesystemsasare

usedto controlthe operationsof largewind tunnels. Thetunnel is now suitable

asa multi-userplatformfor testinginstrumentationandcomponentsaswell as

developingparallelprocessingandcontrol strategies.A neural-net experiment,

performed with a cascade configuration of the tunnel, has been reported. 2 The

modern mach 2 configuration used to generate the training sets for this paper is

shown in Fig. 2. This configuration was upgraded considerably in the last two

years, as shown in Fig. 3, to provide heated, f'dtered, inlet air with variable flow

conditioning, boundary layer bleeds, and dynamic shock positioning and shape

control up to 100 Hz. The modern tunnel's inlet supply also has several

additional 8 in. (0.203 m) diameter valves, and the tunnel's exhaust system has

an additional 8 in. (0.203 m) diameter bypass valve.

The specific components of the tunnel needed to interpret the

experimental procedure and results discussed in this paper are shown in the

highly simplified diagram of Fig. 4. Flow is essentially controlled through the

combustion air valves AC-2408 A and AC-2408 B. The groups of boundary

layer bleed and exhaust valves were preset for training set generation. In fact,

any serious attempt at complete automation would need to recognize that the

tunnel, as shown in Fig. 3, uses more than 60 valves.
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Flow visualizationwasacquiredthrougha pair of 47 in. (1.19m) long

windows. The shadowgraphfield for this work wasactuallycenterednearthe

right edgesof thewindows 40 in (1.02m) downstreamof the nozzlethroator

approximately2 in. (0.05m) downstreamof the nozzleexit. The positional

stability andrepeatabilityof theone-passshadowgraphandthetunnelwall were

assuredto within 0.002in. (0.005cm) usinga hardmountedsystemwith taper

dowelpins. The shadowgraphcarriagecanbe relocatedwithin this accuracy

along the entirelengthof thetunnel. The neuralnetsrequirethis relocation

accuracyashasbeenreported.2 The actual shadowgraph field recorded was

about 10 by 8.5 in. (0.25 by 0.21 m). A sample image is inserted in Fig. 4 for

reference.

Figure 4 shows only three of many sensors. The static inlet or plenum

pressure is indicated by PT, and a static test section pressure located 0.5 in.

(1.27 cm) downstream of the nozzle exit is indicated by Ps. The mach number

probe MN_ was located 48 in. (1.22 m) aft of the nozzle throat or about 8 in.

(0.2 m) downstream of the nozzle exit, just downstream of the developing test

rhombus. The pressure sensors are, in fact, part of a 186 channel electronically

sensed pressure system with an accuracy of +0.033 psi (+228 pascal).

Considerably greater pressure fluctuations than the accuracy are induced at times

by the upstream or downstream hardware; the time averages of these fluctuations

rather than the accuracy of the transducers determine the tunnel operator's

responses and neural-net gaining sets.
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Tunnel informationis handled,andcontrol is exercised,with the systems

to bedescribedin the nextsection.

TUNNEL INFORMATION HANDLING AND CONTROL

The subsystems used to acquire, handle and process information on the

state of the tunnel as well as exercise control of the wind tunnel are outlined in

Fig. 5. The SGI Crimson XS24 workstation is a key element and is

representative of the growing computer technology that makes this study

relevant. The workstation has 256 megabytes of random access memory for

compilation and high speed execution of the neural net algorithms as well as

four VME slots, two SCSI buses, an Ethernet connection, and four serial ports

for communications. The VME slots, Ethernet connection, and serial ports are

used to acquire and change the state of the tunnel. All flow visualization

patterns enter the computer via a VME mounted, color video frame grabber. 5

The frame grabber supports a variety of television and image formats, but the

shadowgraph patterns discussed herein were acquired with a NTSC, 646 X 486

pixel, black-and-white CCD camera. 6 This camera operates at 30 frames per

second with two fields per frame; hence unsteady flow visualization patterns are

time averaged and may change from one field to the next. At this stage, all

sensor and control data (pressures, temperatures, valve settings, and mach

numbers) are acquired by Lewis's ESCORT D central data acquisition system.

The data is transmitted in a few seconds to the workstation's Ethernet connector,

via a local area network, in the form of possibly more than 800 ascii encoded
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sensorandcontrol values. Fast acquisition of sensor values and transmission of

control information require direct communications with the facility's MODICON

programmable logic control system: A software package is being developed to

implement direct communications with MODICON through the workstation's

serial ports. A noteworthy point is that the workstation is intended eventually to

be used as a slave module in the control system. Image handling, massive

parallel processing, and neural-net decision making will be done in the

workstation, but the results will be filed for use at the convenience of the control

system. This approach makes it easier to interface automation to existing

protocols and distributed control systems in wind tunnels and other facilities.

A commercial package was used to create the workstation's artificial

neural networks: This package contains versions of a large number ofneural

net paradigms, but the work discussed herein used only the feedforward neural

networks (exemplified by Fig. 6), Fuzzy ARTMAP, and the modular neural

network.

At this point, the authors wish to emphasize that successful automation of

wind tunnel operations depends strongly on a practical, personal, competent

knowledge of the wind tunnel, its instrumentation, and its controls and only very

weakly on a knowledge of neural network technology. An extensive discussion

of the theory and practice of neural networks is beyond the scope of this paper

and is not especially necessary or helpful. There is an extensive literature

discussing artificial neural networks including books s'9 as well as tutorials and
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workshops,i°,u

Speakingvery briefly, anartificial neuralnetworkasdepictedin Fig. 6 is

a collectionof interconnectednonlinearprocessingelementsor nodes. ( Figure6

showsfull connectionsfor only oneinput nodeandoneoutputnode.) The

connectionsbetweennodestypically areweighted;thenetworktypically has

vectorsor arraysof inputsandoutputs. The programor mappingbetweeninputs

andoutputstypically is encodedin the connectionweights. The algorithm for

adjusting the weights to achieve a desired mapping of inputs onto outputs is

called a training algorithm. Biological allusions such as "neural net" and

_tmining" originated in the weak similarities of some artificial neural networks to

the living variety. For those allusions, connection weights are associated with

the strengths of electrochemical synapses; nodes are associated with neurons; and

the output connections of nodes are associated with axons. Such semantics have

no direct application in this paper.

As explained, the objective of this work was to train or program a neural

network or system of neural networks to estimate the next desired state of the

wind tunnel from its current state. The inputs to the neural networks then

consisted of vectors of pixel values from the CCD camera, pressure sensor

readings, mach numbers, and valve settings. The outputs consisted of exactly

the same kinds of information, but represented the next operating state of the

wind tunnel. The expert operator generated a representative training set of input-

vector, output-vector pairs during a run; that is, the operator developed a training
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setby example. Saidtrainingpairsmustcoverthe spaceof likely tunnel states

or transitions between states for successful training.

We considered among the following factors in selecting neural net

software packages and paradigms for learning the training sets. The first

considerations were convenience and cost: we used commercially available,

menu driven packages to avoid incurring software writing costs. The

commercial package used for the work reported herein 7 provided menu driven

control of all processes including: training set selection, test set selection, net

selection, net creation, net training, net testing, monitoring of net performance,

and C language encoding of the trained net. The package allowed the creation

of nets containing up to 20,000 nodes or neurons. A second consideration was

the ability of a net to generalize or to extrapolate and interpolate given the

discrete examples of the training set. Possible additional considerations were the

training time and the recall time or response time of the trained net.

The feedforward net depicted in Fig. 6 is a common example of neural

networks; feedforward nets were used to generate most of the results in this

paper. The nodes for the net of Fig. 6 are arranged in three layers. The lowest

layer or input layer in this example contains 3,648 inputs to receive the pixel

values from 57 X 64 pixel shadowgraph images. (The 8 bit pixel values must

actually be normalized between 0 and 1.) The second layer, containing 16

nodes, is called a hidden layer. Each node in the hidden layer is connected to

every node in the input layer via weighted connections. Each node in the
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hiddenlayer alsohasa biasinput not shown. Theweightedinputsaregenerally

summedby thehiddenlayernode,andthe sumis transformedusinga nonlinear

function. Thetransformedsumis thenappliedto theoutputof thenode,andthe

outputis fannedout to thehighestlayer or outputlayer. Eachnodein the

outputlayerperformssimilarprocessing.The outputlayer alsocontains 3,648

nodescorrespondingto a 57X 64 pixel outputimage. Theoutputimagemight

be thenext imagein a sequenceof imagesassociatedwith a sequenceof tunnel

states.Training is aniterativeprocesswhereinput imagesareappliedto the

inputs;output imagesaregeneratedandcomparedwith thetrainingimage;and

theweightsareadjusted.Therearemanykinds andvariationsof training

algorithms;thereaderis referredto thereferencesfor discussions.

Nets suchasthat shownin Fig. 6 currentlyrequireaworkstation

environment.The menudrivenversionof thetrainednetoccupies 5 to 6

megabytesof storage.TheC languagecodewith commentsfor thetrainednet

alsooccupies5 to 6 megabytes.Thecompiledcodeandcalling program

occupy 3 to 4 megabytes.But, compilationrequiresmorethanhalf of the 256

megabyterandomaccessmemory. Executionspeedis morethanadequate.One

compilednetwasmeasuredto processmorethan 300 imagespersecondwhere

theimageswere 60 X 60 pixels andwheretherewere 7 outputnodesfor 7

sensorvalues.

The tunneloperator currently operates the tunnel with manual controls

while monitoring the sensor values and flow visualization. There are more than
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60 valves as has been mentioned, and most are not operated during a run.

Many are preset during the tunnel's initial tuning phase to provide proper

boundary layer bleed conditions. The major concern during operation of the

tunnel for any purpose, including training set generation, is the integrity of the

two one-of-a-kind optical windows shown as the longer windows in Fig. 2.

Pressure changes are not permitted to exceed 3 to 6 psi (20 to 40 kilopascals)

per minute. The major consequence of this requirement is that operations are

performed slowly, and even the local area network is fast enough for the neural-

net experiments. The actual experimental procedure is described next.

EXPERIMENTAL PROCEDURE

The experimental procedure includes training set acquisition, training set

preprocessing, neural net training, and neural net testing. Training set acquisition

consists of recording the sequence of tunnel states leading to a particular state

such as fully developed flow. The objective is to select exactly those sensor

readings, control settings and flow visualization patterns that the operator refers

to in setting the tunnel state. Some combinations of those sensor readings,

control settings, and visualization patterns are then used to construct the input

and output vectors for the neural networks.

The actual procedure for training set acquisition was more poorly defined.

The operator was forced to learn by trial and error a procedure for mach 2

operation of the modernized tunnel, and sequences varied significantly from one

run to the next. The stability of the flow varied greatly from start-up to fully
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developedflow. Pressurefluctuationsmorethan 1 psi (7 kilopascal)were

encounteredat times. Someflow regionsproducedvery stableshadowgraph

patterns;otherflow regionsproducedtime averagedpatterns.The ESCORTD

datadumpsdisplayedall thesensorvalues,but containedonly snapshotsof

possiblyfluctuatingdata. Thecentralair handlingservicesfor the tunnelwere

sharedby a largenumberof facilities; thetunneldid not havea goodsystemfor

regulation. Hence,the sensorvaluesfor a givenflow visualizationpatternoften

variedfrom day to day,hourto hour, or evenminuteto minute.

This sectionwill discusstheproceduresfor trainingsetdevelopmentfrom

two runs. For one run, the operator viewed certain pressure sensor readings,

valve settings, and mach numbers, and set the next values of the same, to

generate the training sequences. For the second run, the operator viewed only

the shadowgraph patterns to generate shadowgraph-to-shadowgraph sequences.

The two kinds of runs in fact were performed in different months.

For this paper, neural networks were trained with the sensor readings and

shadowgraph patterns from the second (visualization controlled) run; the

accuracy of training was measured; and the trained nets were tested against the

first (sensor controlled) run. The procedures for performing the sensor and

visualization controlled runs of the tunnel and acquiring the training data are

discussed next.

The following procedure was adopted to protect the optical windows and

acquire the training data. The test section was evacuated through the boundary
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layer bleeds from ambient pressure to a pressure of 2.0 psia (13.8 kilopascal).

The sidewall, roof, floor, and pre-throat bleeds were opened in the stated order to

control the evacuation rate to 3 to 6 psi (20 to 40 kilopascal) per minute to

protect the windows. Several minutes were then needed for automatic calibration

of the data acquisition system and the recording of baseline shadowgraph. For

the sensor controlled run, the inlet or plenum pressure P7 was increased in

approximately 1 psi (6.9 kilopascal) increments. Shadowgraph and a data dump

were recorded after each increment. Approximately 20 minutes were required

to reach a f'mal plenum pressure of about 35 psia (241 kilopascal). A similar,

but reversed, schedule was followed for shutdown. The operator was able to

perform the visualization controlled run by remembering and distinguishing

changes in the sequence of shadowgraph patterns corresponding to approximately

1 psi (6.9 kilopascal) increments. The valves were operated to change from one

pattern to the next. Shadowgraph and a data dump were recorded for each

pattern in the sequence.

As stated, all training reported in this paper was accomplished with the

visualization controlled run even though the operator did not use the sensor data

to control that run. Part of a sequence of shadowgraph images from the

visualization controlled run is shown in Fig. 7. The top row in that figure

shows 646 X 486 pixel images. The flow is from right to left. The

shadowgraph fields occupy only part of the images. The images were prepared

for training f'u'st by cropping them to 340 X 302 pixels to show only the
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shadowgraphfields. The resolutionwasthenreducedto 64X 57 pixels for

handlingby theneuralnetsoftware,and theimageswereconvertedto binary

format. TheseoperationswereaccomplishedusingstandardSGI image

processingcommands.An image-to-imagetrainingsetwasthenconstructed

simply by combiningadjacentshadowgraphpatternsin the sequenceasinput-

outputpairs. The actualformat dependssomewhaton theprotocolsof the

commercialneuralnetpackageandon theneuralnet type. A feedforwardnet,

for example,requiresthatthe input pixels, whosevaluescanbebetween 0 and

255, benormalizedbetween0 and 1. For this paper,all pixels were

normalizedfor thefull rangeof 0 to 255. An alternativeis to note the actual

rangeof valuesexhibitedby eachindividual pixel in thefull trainingset. The

pixels are thenindividually normalizedfor theirparticularranges.Individual

pixel normalizationwasvery sensitiveto timevarying illumination effectsas

well astime varyingwindow patternsandwasnot effective. The outputpixel

valueswerenormalizedbetween0.2 and0.8 to accommodatethenode

nonlineartransferfunction(a sigmoidalfunction).

Trainingsetpreparationusingthepressuresensors,machnumbersand

valve settingswasmoredifficult. Shadowgraphpatternsweredefinitive; but as

mentionedearlier,pressures,downstreammachnumbersandsupply-airvalve

settingsdependedon theotherusersand theconfigurationof the air handling

system.The valveshavenonlinearhysteresiseffects. Hence,a mapping

betweena particularshadowgraphpatternandcorrespondingpressuresettings,
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roachnumbersandvalvesettingsis not definite. It is necessaryto look for

invariants. Theresultsreportedhereinarebasedasin Fig. 4 on: the inlet

pressureP7, one test section pressure Ps, and the downstream mach number

MN 3 . The input or output vector actually has the form: [PT, (MN3) 2 Psi •

The performances of the nets using P8 or MN3 separately were very poor for

the reasons mentioned. The performances, using the product (MN3) 2 P8

forming the second component of the vector, were fair to good as will be seen.

The sensor values listed here are a small fraction of the total number available.

But PT, Pg, and MN 3 were interrogated often by the tunnel operator, and were

therefore relevant to the objective to train by example.

Adjacent vectors in the operations sequence were then combined to form

the sensor-to-sensor gaining sets. Again, the training sets reported in this paper

were derived from the image (shadowgraph) controlled run. The operator could

not see or examine the sensor values while performing that run; the sensor

values were recovered from the data dumps later. The pressure range for

normalizing P7 is 0 to 50 psi (0 to 345 ldlopascal), and the range for

normalizing (MN3) 2 P8 is 0 to 24 psi (0 to 165 kilopascal).

An image-to-sensor sequencer is also discussed herein. For training, the

64 X 57 pixel images were used as inputs. The outputs consisted of the current

sensor pair and the next sensor pair in the sequence, where a sensor pair is the

vector defined two paragraphs above.

The neural net for the image-to-image sequencer was essentially that

17.



shownin Fig. 6 with 3648input nodes,16 hiddennodes,and 3648 output

nodes. A modifiedbackpropagationalgorithmwasusedfor training. Good

trainingrequiresabout 3000 iterationsper trainingrecord. A trainingrecordis

oneof the input-outputimagepairs.

The neuralnet for the sensor-to-sensorsequencerwasa feedforwardnet

with 2 input nodes, 6 hiddennodes,and 2 outputnodes.The image-to-

sensornethad 3648 input nodes, 16 hiddennodes, and 4 outputnodes.

The neuralnetsweretestedfirst againsttheir trainingsetsandthen

againsttest setsfrom thesensorcontrolledrun acquireda monthearlier. Test

setsareformattedexactlythe sameastrainingsets.

Therunsweredividedsomewhatarbitrarily into threeregionsfor this

exercise. Start-upinvolvedunstablenormalshock-trainpatterns.Thetransition

regionshowedstableshockpatternswhoseshapesandpositionsvaried

significantly asthe flow waschangedto a fully developedflow in thetest

rhombus. The fully developedregioncontainedstableshockpatternsthat

changedonly slowly astheinlet pressurewasincreasedsignificantly. Netswere

trainedwith trainingsetsdevelopedfrom all threeregions,but mosttraining

recordsoriginatedfrom thetransitionregion.

RESULTS AND DISCUSSION

The neural nets outlined in the previous section were trained with records

from the image (shadowgraph)controlled run and tested with records from the

sensor controlled run. The results from that training and testing are presented in
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this section.

In fact, a largenumberof netsweretrainedandtestedon various runs

during a period of about a year. Most of these runs indicated the need to solve

problems such as assuring the accuracy of alignment of the flow visualization

system 2 or responding to the effects of random changes in the central air

handling system. No two run sequences were identical, because of varying

demands on the central air handling system, which makes it difficult to compare

runs. However, the operator had developed a consistent, personal protocol for

bringing up the tunnel for the two runs to be compared. There was no

constraining model which forced the operator to perform identically during the

two runs. Identical performances would be fortuitous; since the operator looked

at pressure sensors for the sensor controlled run and shadowgraph for the image

controlled run. The two runs are compared by looking for state-to-state

transitions that overlap in the two runs as will be explained.

Tables I and II list the output records for training and testing,

respectively, the image-to-sensor net; the inputs are the corresponding 64 X 57

pixel shadowgraph images. Table I lists the sensor values for an 11 record

training set from the image (shadowgraph) controlled run. Each output record

contains an arbitrary state number, the current sensor values, and the next sensor

values for that state.

P7 and the grouping

MN3

The sensor values again are the inlet or plenum pressure

(MN3) 2 P8 which contains the downstream mach number

and the test section pressure P8 • The ratio r of these quantities is also
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listedfor quick reference.That ratio is anapproximateinvariant,andcanbe

usedto identify wherethecurrent-to-nexttunnel-statetransitionsoverlap. This

featureis important;sincethe actualsensorvaluesfor a given shadowgraph

patterndependedon the cortfiguration of the central air handling system and its

users.

Table 11 lists the sensor values for a 12 record test set from the earlier

sensor controlled run. The format of Table II is the same as the format of

Table I.

Figure 8 shows the performance of the image-to-sensor net in predicting

the current sensor values. The top row of that figure shows the response of the

net to the training set, and the bottom row shows the response of the net to the

test set. The solid lines in the plots are the data-dump sensor values, and the

solid dots are the net generated sensor values. The net is seen to generate the

training values well (upper row of Fig. 8 ), but is seen to generate the test values

well only in the middle regions of the lower-row plots.

Figure 9 has the same form as Fig. 8, but shows the next sensor values

in sequence rather than the current sensor values for a state. This plot is more

appropriate for predicting the control potential of the net.

There are no identical transitions in Tables I and I/; however there is

overlap in both the transitions between ratios and the trend in those transitions

beginning at about state 4 in Table II. The net generates the test values well

beginning at about this state. Lack of overlap is not the only factor in
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explainingthepoorerperformanceat thelower pressures(smallerstatenumbers).

Flow fluctuationsarelargeat the lower pressuresdueto disturbancescausedby

partly opencontrolvalves. The shockwavejitter is asmuchas 5:1/4 in.

(+ 6 mm) at lower pressures.The input shadowgraphpatternsaretime-averaged

by theNTSC cameraanddiffer betweenfields of a frame. Def'mitivecontrol is

difficult whentheplenumpressureP7 is lessthanabout 9 psia (62 kilopascal).

Plenumpressuresgreaterthanabout 19psia (131kilopascal)

correspondto a fully developedflow regionwheretheinput shadowgraph

changedveryslowly, if at all, with pressure.Thisregionshowedstrong,stable,

obliqueshockwavesoriginatingfrom the nozzleexit. The operatorhasreported

sensingshadowgraphcontrastchangesasinlet pressurewasincreasedin thefully

developedflow region. But the feedforward nets are not especially sensitive to

contrast or brightness changes as has been reported before. 2 Hence, the inability

of the nets to estimate sensor values from shadowgraph patterns at the higher

pressures is also understandable.

Part of the sequence of training images used to train the image-to-image

sequencer has already been shown in Fig. 7. The image-to-image net learned

this sequence very well at plenum pressures greater than 9 psia (131

kilopascal). The top row of Fig. 10 shows these training outputs again, and the

bottom row of Fig. 10 shows the corresponding net generated images. Referring

to Table I, the images correspond left-to-right to the transitions for training state

numbers 6, 7, 8, and 9.
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Figure 11 showstheperformanceof the image-to-imagesequencerfor

someof thetest images.The toprow showstheactualshadowgraphimages,

andthebottomro_/showsthecorrespondingnetgeneratedimages. Keep in

mind that theshadowgraphpatternsarequite sensitiveto changesin thesensor

valuesandthevalve settings.Thereareno identicaltransitionsin TablesI and

II. The training imagescoverthe spaceof possibleimagesquite sparsely.And

thedirt patternson thewindowsdiffer betweenthetrainingandtestruns.

Referringto Table II, the imagescorrespondleft-to-right to the transitionsfor

teststatenumbers 5, 6, 7, and8.

Figure 12showstheperformanceof thesensor-to-sensorsequencer. The

currentandnext sensorvaluesin TablesI andII arecompleteinput-output

trainingandtest records,respectively,for this sequencer.The training

performancein theupperrow is not perfect,but the testperformancein the

lowerrow is comparable,at leastwhencomparedwith theperformancesof the

imagetrainednets. The sensor-to-sensornetwasdefinitely ableto learnby

examplethat theratio of sensorvaluesis anapproximateinvariant;the net

functionsevenin theunstableflow regionandto someextentin thefully

developedflow region.

CONCLUDING REMARKS

Figures8-12 showthat a tunneloperatorcan trainby exampleartificial

neuralnetworksto estimatethe nextoperatingstateof a tunnel,but theprocess

22.



is by nomeansstraightforward.The operator'sintuition andpersonalanecdotes

havelittle valuein designingtheprocess.First, onemustidentify exactlythe

sensorandflow visualizationdatathattheoperatorusesin controlling

operations.Theoperatorof thesupersonicwind tunnelclearlyusedveryfew

sensorswhile operatingthe tunnelto generatethetrainingsetsfor thispaper.

Nevertheless,asstated,the neuralnetscouldnot learnto estimatethefew raw

sensorreadings.Productsof sensorreadingswererequiredto Irain thenets

successfully.This effect was recognized some time ago by Yoh-Han Pao and is

the rational behind his proprietary functional link net. _2 The tunnel operator

evidently was able to work with individual sensors without consciously

assembling the readings into invariants. The standard feedforward nets were not

able to learn from this example. The conclusion is that preprocessing with an

assembling algorithm is required. An alternative is to have good constraining

models which indicate the invariants or approximate invariants for training the

nets.

Flow visualization images were also used successfully to estimate the

next sensor values to be set. The sensor values again must be preassembled into

the proper products and quotients for successful training. The procedures for

handling the flow visualization images themselves require more development.

There are interesting and useful questions to be answered. Are there simple

preprocessing steps, akin to selecting sensor invariants for example, that would

improve training? Can model generated images be used for training? One
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indicationthat modelgeneratedimagesmight beveryeffectiveis that

feedforwardnetsshowlow contrastsensitivity. The consequenceis thatmodel

images,not differing muchfrom line drawings,might besuitablefor training

artificial neuralnetworksfor tunnelcontrol. The netstrainedwith thesemodel

imagesmight not beaffectedby the variationsin brightness,thevariationsin

contrast,the additionof noise,or the blurring of edgesfoundin real flow

visualizationimages. The availabilityof goodtunnelmodelswouldagainhelp.

The overallprojectfor testingneuralnetcontrolof wind tunnel

operationshasresultedin somegoodsuggestionsfor introducing,evaluatingand

managingautomationof wind tunneloperations.The fastparallelprocessing

workstationis to beusedessentiallyasa slavemodule. In effect, the

workstationmapsthecurrentstateof the tunnelonto thenextstateof thetunnel

anddepositstheresultsin a file. Thetunnelcontrolsystemsimplypicks up and

usestheresultswhenready. As mentioned,the SGIto Modicon interfaceis

beingdevelopedwith this protocolin mind. Theprotocolallowsdifferent

approachesto automationto be testedin any facility while minimizing

interruptionof thefacility's operationsor disturbancesof thefacility's

configurations.

The artificial neuralnetworkscanmeasuretheeffectivenessand

consistencyof utilization of the tunnel'sresources.Thetestsperformedin

connectionwith thisprojectisolatedthefew sensorvaluesactuallyusedto

control the operationof thetunnel. Anecdotalclaimsof relationshipsbetween
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sensorvalues,flow visualizationfeatures,responsesof controls, effectiveness of

models and tunnel operations are suspicious when the neural nets are unable to

learn these relationships.
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Table I. Sensor Outputs (Training)

State P7

psi

5

1 7.73

2 8.98

3 9.80

4 10.49

11.76

6

7

8

9

10

11

12.79

13.92

15.11

16.44

19.15

22.09

Current

(MN3)2Ps

psi

2.60

Ratio

r

0.337 8.98

0.372 9.80

P7

psi

Next

(MN3) 2P8

psi

3.34

Ratio

r

0 .372

3.34 3.83 0.391

3.83 0.391 10.49 4.67 0.445

4.67 0.445 11.76 4.74 0.403

4.74 0.403 12.79 4.93 0.385

4.93 0.385

0.358

0.352

0.361

0.359

0.365

4.98

13.92

15.11

16.44

19.15

22.09

26.84

5.32

5.93

4.98

5.32

5.93

6.87

8.06

9.95

6.87

8.06

1'7 is the static inlet pressure.

Ps is a static test section pressure.

MN3 is the roach number downstream of the shadowgraph.

r is the ratio (MN3)2P_PT.

0.358

0.352

0.361

0.359

0.365

0.371



Table II. SensorOutputs (Test)

State P7

psi

1 6.26

2 8.29

3 9.30

4 10.36

5 11.36

6 12.53

Current

(MN3)2P8

psi

Ratio

r

P7

psi

Next

(MN3)2P8

psi

Ratio

r

3.14 0.502 8.29 3.43 0.414

3.43 0.414 9.30 3.79 0.408

3.79 0.408 10.36 3.87 0.374

3.87 0.374 11.36 3.98 0.350

3.98 0.350 12.53 4.26 0.340

4.26 0.340 13.47 4.73 0.351

0.351 14.29 5.08 0.3557 13.47 4.73

8 14.29 5.08 0.355 18.25 6.33 0.347

9 18.25 6.33 0.347 19.45 6.76 0.348

10 19.45 6.76 0.348 20.50 7.13 0.348

11 20.50 7.13 0.348 22.30 7.95 0.356

0.35622.30 23.417.95 7.6912 0.328

P_ is the static inlet pressure.

I'8 is a static test section pressure.

MN3 is the roach number downstream of the shadowgraph.

r is the ratio (MN3)2Ps/PT.



FIGURE CAPTIONS

Fig. 1 1946configuration of wind tunnel.4

Fig. 2 Modernized mach 2 configuration of wind tunnel.

Fig. 3 Schematic of 1994 configuration of tunnel services.

Fig. 4 Tunnel components and shadowgraph field.

Fig. 5 Flow of information handling and control.

Fig. 6 Feedforward neural network. Connections shown for one input and

one output node.

Fig. 7 Part of a sequence of raw (top row) and processed (bottom row)

shadowgraph patterns from the image controlled run. The flow is from

right to left.

Fig. 8 Performance of image-to-sensor neural network in predicting current

sensor outputs. Top row shows response to training images; bottom row

shows response to test images. Lines represent measured outputs; dots

represent net generated outputs. State numbers are from Tables I and IL

Fig. 9 Performance of image-to-sensor neural network as sequencer for

predicting next sensor outputs. Top row shows response to training images;

bottom row shows response to test images.

Fig. 10 Performance of image-to-image neural network as sequencer for

predicting next shadowgraph pattern. Top row shows actual training

shadowgraph patterns; bottom row shows corresponding net generated

patterns.

Fig 11 Performance of image-to.image neural network as sequencer for

predicting next shadowgraph pattern. Top row shows actual test

shadowgraph patterns; bottom row shows corresponding net generated

patterns.

Fig. 12 Performance of sensor-to-sensor neural network as sequencer.

row shows performance for training records; bottom row shows

performance for test records.
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